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Introduction 1
In this thesis we investigate topological properties and invariants of a special
class of non-linear partial differential equations (PDEs) with applications to the
theory of relative braid classes. The three main results can be summarized as
follows:

• the Poincaré-Hopf Theorem for relative braid classes;

• the construction of an isomorphism between the braid Floer homology and
the braid Morse homology;

• a generalization of the Poincaré-Bendixson Theorem for non-linear Cauchy-
Riemann equations.

In the next sections we explain the interplay between braids and differential equa-
tions, and why we can exploit the topological properties therein contained. In
order to put this into a more general context, we start off with some examples
which involve the solution of analytical problems via topological tools.

1.1 Examples of topological invariants in analysis

In this thesis we use topology as a useful tool which can give information on
the structure of dynamical systems. Perhaps the first user of topology in differ-
ential equations was Poincaré, who developed many of his topological methods
while studying ordinary differential equations which arose from certain astron-
omy problems. His study of autonomous systems

ẋ = F (x), x ∈ R2
, F ∈ C

1
(R2

;R2
).

involved looking at the totality of all solutions rather than at particular trajec-
tories as had been the case earlier. This is the context of the famous Poincaré-
Bendixson Theorem.

The use of topological techniques in analysis is full of insightful examples. We
provide three.

(i) The classical BROUWER DEGREE theory provides a tool that contains infor-
mation about the zeroes of a continuous function. Its infinite-dimensional
generalization, the LERAY-SCHAUDER DEGREE, applies to a special class of
operators.

(ii) The POINCARÉ-HOPF FORMULA relates a purely topological concept, i.e.
the Euler characteristic of a smooth manifold M , to the index of a vector
field on M , which is a purely analytical concept.
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(iii) MORSE THEORY also can be put in this framework: one of the consequences
of the Morse inequalities is that the number of critical points of any Morse
function on a smooth manifold is closely related to the homology of the
underlying manifold.

1.1.1 The Brouwer degree and the Leray-Schauder degree

The analytical construction of the (localized) Brouwer degree deg(f,Ω, p) of a
smooth mapping f : Ω ⊂ Rn → Rn, with Ω open bounded and a regular value
p �∈ f(∂Ω), is defined as

deg(f,Ω, p) :=

�

x∈f−1(p)

sgn Jf (x).

Here Jf denotes the Jacobian of f. By approximation one can extend the definition
to continuous functions and also to non-regular values.

For such maps the degree being non-vanishing implies the existence of an
x ∈ Ω such that f(x) = p. More importantly the Brouwer degree is invariant un-
der homotopies of functions and of domains. On the base of these properties one
can show that degree theory has important implications, among which Brouwer’s
fixed point Theorem. In full generality the latter states that any Hausdorff topo-
logical space homeomorphic to the unit closed ball B1(0) ⊂ Rn has the fixed point
property 1.

A straightforward generalization of Brouwer’s fixed point Theorem to infi-
nite dimensions, i.e., using the unit ball of an arbitrary Banach space instead
of Euclidean space, is not true. The main problem here is that the unit balls in
infinite-dimensional Banach spaces are not compact. Nevertheless an infinite di-
mensional degree theory exists and has been developed by Leray and Schauder.
They identified an important class of non-linear operators in a Banach space, the
compact perturbations of the identity, for which the problem of contractibility
of the sphere could be solved. This extension has been successfully applied to
non-linear elliptic boundary value problems, see [42].

1.1.2 The Hairy Ball Theorem and the Poincaré-Hopf formula

The Hairy Ball Theorem states that there is no non-vanishing continuous tangent
vector field on even dimensional n-spheres. For ordinary spheres, or 2-spheres,
the latter can be rephrased as follows: whenever one attempts to comb a hairy
ball flat, there will always be at least one tuft of hair at one point on the ball.
The theorem was first stated by Poincaré in the late 19th century and proved in

1A Hausdorff topological space X has the fixed point property if every continuous mapping g :
X → X has at least one fixed point.
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Figure 1.1: The standard two-torus T2 embedded in R3. In black the sublevel sets
of the height function.

1912 by Brouwer. This is famously stated as you can’t comb a hairy ball flat without
creating a cowlick, or sometimes you can’t comb the hair on a coconut.

From a more advanced point of view, every zero of a vector field has an index
2, and it can be shown that for an even dimensional sphere the sum of all of the
indices at all of the zeros must be two. Therefore there must be at least one zero.
This is a consequence of the Poincaré-Hopf formula. The latter has the form

�

i

indX(xi) = χ(M), (1.1)

where M is a manifold, X a vector field on M , the sum of the indices is over all
the isolated zeroes of X, and χ(M) is the Euler characteristic of M. One important
consequence of (1.1) is that the index of a vector field does not depend on the
choice of the vector field, but only on the topology of the manifold M. In the
case of the torus, the Euler characteristic is 0; and it is possible to comb a hairy
doughnut flat. In this regard, it follows that for any compact regular 2-dimensional
manifold with non-zero Euler characteristic, any continuous tangent vector field
has at least one zero.

1.1.3 Classical Morse Theory

The power of Morse theory is that it provides an analytical framework in which
to study the topology of manifolds. One of the classical references is Milnor [38].

Consider the standard embedding of the two-torus T2 in R3
, as shown in Fig-

ure 1.1 and the height function h : T2 → R which returns the third coordinate of
such embedding. This function has four critical points. By studying the sublevel

2defined, for an isolated zero, in terms of the mapping degree introduced in the previous section
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Figure 1.2: Handle decomposition of the sublevel sets of the embedded two-torus.

sets Mc = h
−1
((−∞, c)) we realize that the topology of Mc does not change as

long as c does not pass a critical value of f. When c crosses a critical value, the
topology changes. Morse theory is the study of this phenomenon. More gener-
ally, if a manifold has a non-trivial homotopy type, the sublevel set M∞ has a
non-trivial homotopy type and therefore f must have critical points. The Morse
inequalities [9] are a concise formulation of this, relating the minimum number
of critical points of a function to the homology of the underlying manifold. They
imply furthermore (1.1). One can prove that the homotopy type of a sublevel set
changes exactly by attaching an n-cell (or an n-handle as in Figure 1.2) where n is
given by the nature of the critical point, i.e., depending whether the critical point
is a minimum, maximum, or a saddle point. One builds up a CW-complex in this
manner, which captures the homotopy type of the manifold. For this to work the
function f needs to satisfy certain properties, which are contained in the concept
of a Morse function.

1.2 Braids and braid diagrams

In this section we begin with informal definitions of braids, braid classes and
relative braid classes in three different contexts. All three settings are closely
related and we will point out their relations. We will mainly follow [53].

1.2.1 Braids on D2

Consider the standard 2-disc D2 (with coordinates x = (p, q) ∈ D2) in the plane
and the cylinder C = [0, 1]×D2 . An unordered collection of continuous functions
x = {x1

(t), . . . , x
m
(t)}, xk

: [0, 1] → D2 (called strands) is called a braid on the 2-
disc D2 if:

(i) x
k
(t + 1) = x

σ(k)
(t) for some permutation σ ∈ Sm, and

(ii) x
k
(t) �= x

h
(t) for all k �= h and all t ∈ [0, 1].
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The set of all braids on D2 homotopic to x is denoted by [x]D2 and is called a
braid class. We will often use, for such braids, the terminology bounded braids,
since for all x0 ∈ [x]D2 we have |x0| ≤ 1. A way to visualize a braid is to consider
a so-called braid diagram in the plane. The latter is obtained by projecting the
cylinder C onto a plane of the form [0, 1] × L, where is L ⊂ R is a diameter of D2

.

If we denote the projection by π : D2 → L, then two strands xk
(t) and x

h
(t) have

a positive crossing in the projection at πxk
(t0) = πx

h
(t0) if xk

−x
h rotates counter

clockwise about the origin, for small interval of times t around t0. A negative
crossing corresponds to a clockwise rotation. Now consider special collections
of the form {x(t), y1(t), . . . , ym(t)}, with x = {x(t)} a periodic function on [0, 1],

with values in D2 and y = {y1(t), . . . , ym(t)} as above. Denote such collections by
x rel y and assume that they are braids with 1 + m strands. Since we singled out
two braid components we denote the braid class containing x rel y by [x rel y]D2 .

The latter is called a relative braid class, abbreviated RBC. The component y is
called the skeleton of the relative braid class. We refer to the x-component as the
free part. If we take the skeleton y to be fixed, then the set of periodic functions
x for which x rel y is a braid is denoted by [x]D2 rel y and is called a relative braid
class fiber. On [x]D2 rel y we consider the C

0 topology. The space [x rel y]D2 is a
fibered space over [y]D2 and the relative braid class [x]D2 rel y is a fiber in [x rel y]D2 .

The intertwining between x and y gives rise to different braid classes. A relative
braid class is called PROPER if x can not be deformed, or ‘collapsed’, onto any y

components, nor onto the boundary ∂D2
. We abbreviate proper relative relative

braid classes as PRBCes. In this thesis we consider only relative braids, whose
free part is composed by only one strand, but we can easily generalize the notion
of relative braid (classes) with x consisting of n strands.

1.2.2 Braid diagrams in dimension 1

In the special case that strands x(t) are of the form xL(t) = (qt(t), q(t)) the projec-
tion onto the q-coordinate provides a representation of a braid in terms of graphs.
Such strands satisfy the property that they lie in the kernel of the one-form

α = dq − pdt,

which is known as the Legendrian property. An unordered collection of functions
Q = {Q1

(t), . . . , Q
m
(t)}, Qj

: [0, 1] → [−1, 1], j = 1, . . . ,m is called a (bounded)
braid diagram or, equivalently a (bounded) LEGENDRIAN braid if

(i) Q
k
(t + 1) = Q

σ(k)
(t) for some σ ∈ Sm, and

(ii) all graphs Qk
(t) intersect transversally.

The set of all braid diagrams isotopic to Q is denoted by [Q][−1,1]. As before we
also consider collections of the form q relQ = {q(t), Q1

(t), . . . , Q
m
(t)} and the
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Figure 1.3: A positive relative braid and its Legendrian projection.

associated (bounded) relative braid classes [q relQ][−1,1] and [q][−1,1] relQ (fibers).
In order to slim the notation for bounded Legendrian RBC we will write sim-
ply [q relQ] and for fibers [q] relQ, instead of [q relQ][−1,1] and [q][−1,1] relQ respec-
tively. It is immediate that these Legendrian braid classes are a subset of the braid
classes on D2

. The Legendrian constraints implies that all crossings of strands are
positive.

As in the case of D2
, the intertwining between q and Q yields different braid

classes. In this case the notion of proper translates into the following condition.
We say that a relative Legendrian braid class is PROPER if the strand q cannot be
deformed onto any of the strands Q

k
, for all k = 1, . . . ,m nor onto the constant

strands ±1.

1.2.3 Discrete braid diagrams

Yet another simplification is obtained by considering piecewise linear functions
connecting the points qi = q(i/d), i = 0, . . . , d. We represent such piecewise lin-
ear functions by sequences qD = {qi}i=0,...,d. Both the sequences and their linear
piecewise extension will be denoted by the same symbol qD. An unordered col-
lection of sequences QD = {Q1

D
, . . . , Q

m

D
} = {{Q1

i
}, . . . , {Qm

i
}}i=0,...,d is called a

discrete, or PIECEWISE LINEAR BRAID DIAGRAM if

(i) Q
k

i+1 = Q
σ(k)
i

, for some permutation σ ∈ Sm, and for all i = 0, . . . , d

(ii) all the graphs Qk
(t) intersect transversally 3.

3in this setting we say that an intersection is transverse if (Qk

i−1−Q
k
�

i−1)(Q
k

i+1−Q
k
�

i+1) > 0 whenever
Q

k

i
= Q

k
�

i
.
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Figure 1.4: A Legendrian relative braid and its discretization.

The set of the equivalents classes, via isotopy, fixing the endpoints is denoted
by [QD]. Crossing in this setting are also marked as positive. Collections of the
form qD relQD = {qD, Q

1
D
, . . . Q

m

D
} and the associated relative braid class are

denoted by [qD relQD] are the fibers by [qD] relQD. As before, we say that a class
of discrete braid diagrams is PROPER if the piecewise linear strand qD cannot
be deformed onto any of the strands Q

k

D
, for all k = 1, . . . ,m and the strand qD

cannot de deformed onto the constant sequence ±1.

1.2.1. Remark. Properness is a topological condition that descents from braids on
D2 to discrete braids, i.e. properness of [x rel y]D2 implies

[x rel y]D2 =⇒ [q relQ] =⇒ [qD relQD].

The implications do not necessarily go in the opposite direction.

1.3 State of the art: braids and PDEs

The use of braids in dynamics is not without precedent (see e.g. [27], [28], [29],
[39], [50]), in particular if applied to the theory of topological forcing in dimension
two and three ([26], [50], [51]). How do braids evolve and under which equations
this motion is ruled? We explain this in the next three paragraphs. An important
motivation for using braid theory in dynamics comes from the comparison prin-
ciple, which essentially states that if we evolve a braid in time, the complexity
of the braid diminishes. The comparison principle motivates the choice of the
Cauchy-Riemann equation for braids in D2

, the choice of the heat flow for Legen-
drian braids in dimension 1, and the choice of discrete parabolic relations in the
discrete case.
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1.3.1 The Cauchy-Riemann equations

The non-linear equations

us − J(s, t)(ut −XH(t, u)), u : R × S
1
→ D2 (1.2)

are called the Cauchy-Riemann equations, or, abbreviated, non-linear CRE. The
parameters J and H are called almost complex structure and Hamiltonian re-
spectively. An almost complex structure is a smooth map J : R × S

1 → Sp(2,R)
such that J(s, t)2 = − Id, for all (s, t) ∈ R × S

1 (here Sp(2,R) denotes the sym-
plectic group of degree 2 over R). We consider the class of constant almost com-
plex structures and we denote it by J . Regarding the Hamiltonian function
H : S

1
× D2 → R, we assume that H(t, x) = 0 for all x ∈ ∂D2 and all t ∈ R

and we call this class of Hamiltonians H . The Hamiltonian function H gives rise
to the Hamiltonian vector field XH .

For a braid x the total crossing number Cross(x) is defined as the number of
positive minus the number of negative crossings, i.e.

Cross(x) := #{positive crossings} −#{negative crossings}.

For relative braids this number is denoted by Cross(x rel y) and it is an invariant of
the relative braid class [x rel y]D2 . Let [x]D2 rel y be a relative braid class fiber with
skeleton y, then we can choose Hamiltonians H, such that the skeletal strands
are solutions of the s-stationary equations yt = XH(t, y). Let u(s, ·) rel y denote a
local solution in s of the Cauchy-Riemann equations, then

Cross(u(s1, ·) rel y)| ≤ Cross(u(s0, ·) rel y) for all s1 ≥ s0.

This is also known in literature as the Monotonicity Lemma (see [50]): in essence
along solutions u(s, t) of the non-linear CRE (1.2), the number Cross(u(s, ) rel y)

is non-increasing. In other words, along flow-lines of the non-linear CRE posi-
tive crossings can evolve into negative crossings, but not vice-versa. If we con-
sider braid classes which are proper they yield isolating sets for the dynamics:
a bounded solution u(s, ·) ∈ [x]D2 rel y with [x]D2 rel y a proper fiber stays away
both from any of the y components and from ∂D2

.

1.3.2 The heat flow

Consider the scalar parabolic equation, or the non-linear heat flow equation

vs − vtt + v − ∂vW (t, v) = 0, v : R × S
1
→ [−1, 1]. (1.3)
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For the non-linearity W we assume the following hypotheses: W ∈ C
∞
(S

1
×

[−1, 1];R) and ∂vW (t,±1) = ±1 for all t ∈ S
1
. Equation (1.3), unlike (1.2), gener-

ates a local semi-flow ψ
s on the space of periodic function C

0
(S

1
; [−1, 1]).

Let Q be a braid diagram of dimension 1 on m strands, we can define the ana-
logue of the crossing number for x as the intersection number I(Q) as it follows:

I(Q) := #{total number of crossings}.

Since, by the Legendrian constraint, all intersections correspond to positive cross-
ings, the total intersection number is equal to the crossing number defined above.
This means that if we define y = (Qt, Q) then

Cross(y) = I(Q).

The classical lap-number property [6] of non-linear scalar heat equations states
that the number of intersections between two graphs can only decrease in time s,

as s increases.
We now apply this principle to Legendrian braid classes. Let [q] relQ a Leg-

endrian RBC fiber with skeleton Q and suppose that we can choose the non-
linearity U such that the skeletal strands are solutions of the stationary equation
Qtt−Q+∂QW (t, Q) = 0. Denote by v(s, ·) relQ local solutions of the heat equation,
then, as in the elliptic case, then

I(v(s1, ·) relQ) ≤ I(v(s0, ·) relQ) for all s1 ≥ s0

If we consider Legendrian braid classes that are proper they yield isolating sets for
the dynamics: also in this case a bounded solution v(s, ·) ∈ [q] relQ with [q] relQ

a proper Legendrian fiber stays away both from each of the Q components and
from the constant strands ±1 (this property is also called isolation of proper braid
classes).

1.3.3 Discrete parabolic relations

In the discrete setting the dynamics that respect the braids consists of the discrete
parabolic equations. These are recurrence relations on the space of discretized
braid diagram and consist of nearest neighbor interaction. They resemble spacial
discretizations of parabolic equations. For a k-strand braid diagram on d points,
the discrete parabolic relations are given by

d

ds
v
α

i
= Ri(v

α

i−1, v
α

i
, v

α

i+1), for all i = 0, . . . , d − 1, (1.4)
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for every α = 1, . . . , k. On Ri we assume the following: ∂1Ri > 0 and ∂3Ri > 0;

Ri+d = Ri, for all i.
If we restrict the range of the sequences v

α

D
,α = 1, . . . k to the interval [−1, 1],

then Equation (1.4) generates a flow φ
s on the space Dk

d
of k-tuples of d-periodic

sequences. This flow will be referred as parabolic flow on Dk

d
. If we furthermore

assume that Ri(−1,−1,−1) = Ri(1, 1, 1) = 0 for all i, the constant sequences ±1

are stationary for the flow φ
s
.

There is a discrete analogue of the crossing number and the intersection num-
ber. Recall that any discrete braid diagram (of k-strands) can be expressed in
terms of the (positive) generators {σj}

k−1
j=1 of the braid group Bk. While this word

is not necessarily unique, the length of the word is, as one can easily see from
the representation of Bk. As in the previous cases, we consider piecewise linear
braids that are composed by a free part and a skeletal part, and we denote them
by qD relQD. Note that the skeletal part may consist of multiple (say m) piece-
wise linear strands, i.e. QD = {Q1

D
, . . . , Q

m

D
}, while we consider the free strands

to be only of 1 strand. The length of a closed braid in the generators σj is thus
precisely the word metric �(QD) from geometric group theory. The geometric in-
terpretation of �(QD) for a piecewise linear braid QD is the number of pairwise
strand crossings in the diagram QD. This means that if we discretize a positive
braid diagram Q in dimension 1 and we call the discretization QD then

�(QD) = I(Q).

A result in [28] shows that, as for the continuous case, the word length can only
decrease as time s increases.

We now apply this principle to discrete braid diagram. Let [qD] relQD a dis-
cretized RBC fiber with skeleton QD and suppose that we can choose Ri such that
the skeletal strands are solutions of the stationary equation for all α = 1, . . . ,m

Ri(Q
α

i−1, Q
α

i
, Q

α

i+1) = 0, for i = 0, . . . , d − 1 (and by periodicity Q
α

0 = Q
α

d
for all

α = 1, . . . ,m). Denote by vD(s) relQ local solutions of (1.4), then, as in the elliptic
case, and in the continuous parabolic case we have

�(vD(s1) relQ) ≤ �(vD(s0) relQ) for all s1 ≥ s0

This was shown in [28]. Also in this case, if we consider discrete braid classes
which are proper they yield isolating sets for the dynamics.
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1.4 Braid invariants

In the previous section we linked the three types of braid classes to natural dy-
namical systems associated with these braid classes. They all share the properties
that proper braid classes yield isolating sets for the dynamics.

Floer’s approach, used in the beginning to solve the Arnol’d conjecture, de-
velops a Morse type theory for the Hamiltonian action

AH(x) =

� 1

0

1
2 �Jx, xt� dt −

� 1

0
H(t, x(t)) dt.

This applies to the non-linear CRE. The variational structure for the heat flow is
given by the action

LU (q) =

� 1

0

1
2 |qt|

2
+

1
2 |q|

2
dt −

� 1

0
U(t, q(t)) dt

and takes the name of Lagrangian action functional. A discrete variational prin-
ciple for discrete parabolic equations is given by the action

W ({qi}) =

d−1�

i=0

Si(qi, qi+1),

where Si are smooth functions on [−1, 1]×[−1, 1] with the property that ∂1∂2Si > 0.

In this case Ri = ∂2Si−1 + ∂1Si. All the equations introduced above are now
gradient flow equations and we carry out Floer’s procedure.

1.4.1 Floer homology, Morse homology, Conley homology for

proper relative braid classes

Let us explain the basic ingredients of Floer theory for the Cauchy-Riemann equa-
tions. The same applies to the other two cases. We should emphasize that the in-
gredients for obtaining respectively Floer homology, Morse homology and Con-
ley homology are the same, but working out the details is very delicate and some-
times very tedious. Denote the set of bounded solutions of Equation (1.2) in a
braid class fiber [x]D2 rel y, that exists for all s ∈ R, by M ([x]D2 rel y; J,H). The im-
age under the mapping u �→ u(0, ·) is denoted by S ([x]D2 rel y; J,H) ⊂ C(S

1
;R2

).

• Compactness. Consider a PRBC and the set M of bounded solutions of the
Cauchy-Riemann equations in the considered braid class. Elliptic regularity
guarantees that the spaces M and S are compact with respect the appro-
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priate topologies and properness insures that S is isolated. Compactness
and isolation hold in all the three cases.

• Genericity of critical points. For a generic choice of Hamiltonians H in the
class H (where H has been introduced in Section 1.3.1) for which the
skeletal strands y are solutions of the associated Hamilton equations, the
critical points of AH in the proper relative braid class [x]D2 rel y are non-
degenerate. Hence the set of critical points in [x]D2 rel y, which we denote
by CritH([x]D2 rel y), consists only of finitely many isolated points. Notice
that no non-degeneracy condition is imposed on the y strands. The fact that
there are only finitely many isolated critical points in a class holds also for
the other cases.

• Genericity of connecting orbits. The gradient structure of the Cauchy-
Riemann equations implies that M is the union of the space of connecting
orbit:

M ([x]D2 rel y; J,H) =

�

x±∈CritH([x]D2 rel y)

M
x

−
,x

+

([x]D2 rel y; J,H),

where M x
−
,x

+

([x]D2 rel y; J,H) is the subspace of bounded solutions of
Equation (1.2) with limits x

− and x
+ for s → ±∞. It can be proven that for

generic choice of J and H, the space of connecting orbit are smooth finite
dimensional manifolds without boundary.

• Index function. One can establish a grading µ(x) on the non-degenerate
elements of CritH([x]D2 rel y) in such a way the the dimension of
M x

−
,x

+

([x]D2 rel y; J,H) is given by the formula

dimM
x

−
,x

+

([x]D2 rel y; J,H) = µ(x
−
) − µ(x

+
).

This theory is based on the theory of Fredholm operators and holds in all
cases. For the Cauchy-Riemann equations we chose µ to be the Conley-
Zender index, for the heat flow the classical Morse index and the same for
the case of discrete parabolic equations.

• Chain complex and its homology. The construction of the chain complex and
therefore the Floer homology has become a standard procedure ([23]). By
the compactness and genericity CritH([x]D2 rel y) is finite and we define the
chain groups Ck([x]D2 rel y) as formal sum

�
j
αjxj with coefficients αj ∈

Z2. A boundary operator is defined by the formula

∂kx =

�

µ(x�)=k−1

n(x, x
�
)x

�
,
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where n(x, x�
) is the number of elements (modulo 2) in M x

−
,x

+

([x]D2 rel y; J,H)

with µ(x
−
)−µ(x

+
) = 1. Genericity and compactness imply that this number

is finite. Proving that ∂k is a boundary operator is equivalent to showing
that

∂k−1 ◦ ∂k = 0.

The composition counts the number of broken trajectories, i.e. the number
of elements in the set

�

µ(x�)=k−1

�
M

x
−
,x

�
([x]D2 rel y; J,H) × M

x
�
,x

+

([x]D2 rel y; J,H)

�
.

The space M x
−
,x

+

([x]D2 rel y; J,H)/R, with µ(x
−
) − µ(x

+
) = 2, is a mani-

fold without boundary of dimension 1 and the Floer’s gluing construction
reveals that if M x

−
,x

+

([x]D2 rel y; J,H)/R is not compact then the manifold
can be compactified to manifold with boundary diffeomorphic to [0, 1] by
adding broken trajectories in

�

µ(x�)=k−1

�
M

x
−
,x

�
([x]D2 rel y; J,H) × M

x
�
,x

+

([x]D2 rel y; J,H)

�
.

The gluing construction also reveals that the procedure is surjective and
thus the number of broken trajectories is even, thus ∂k−1 ◦∂k = 0. In the end
this proves that (C∗, ∂∗) is a chain complex and its homology is well-defined
and finite.

We define
HFk([x]D2 rel y; J,H) := Hk(C∗, ∂∗).

Different choices of H ∈ H and of J ∈ J (H and J have been defined in
Section 1.3.1) yield isomorphic Floer homologies and

HF∗([x]D2 rel y) = lim
←−

HF∗([x]D2 rel y;H, J),

where the inverse limit is defined with respect to the canonical isomor-
phisms ak(H,H

�
) : HFk([x] rel y;H, J) → HFk([x] rel y;H

�
, J) and bk(J, J

�
) :

HFk([x] rel y;H, J) → HFk([x] rel y;H, J
�
). Some properties are (see [50] for the

proofs):

(i) the groups HFk([x]D2 rel y) are defined for all k ∈ Z and are finite, i.e. Zd

2 for
some d ≥ 0;
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(ii) the groups HFk([x]D2 rel y) are invariants for the fibers in the same rela-
tive braid class [x rel y]D2 , i.e. if x rel y ∼ x

�
rel y

�, then HFk([x]D2 rel y) ∼=

HFk([x
�
]D2 rel y

�
). For this reason we will write HF∗([x rel y]D2);

(iii) if (x rel y) ·∆2� denotes composition with � full twists, then HFk([(x rel y) ·

∆
2�
]D2) ∼= HFk−2�([x rel y]D2).

A similar construction can be carried out for the heat flow equation and the dis-
crete parabolic equation leading to Morse and Conley homology, respectively

HM∗([q relQ]) and HC∗([qD relQD]).

The latter is isomorphic to the homological Conley index. The former will be
referred to as the Morse homology of [q relQ] and the latter as the homological
Conley index of [qD relQD]. Note that properties (i) and (ii) continue to hold in
the three different settings.

1.5 Discussion of the results

Since the construction of these three topological invariants is so similar in the
three cases, the first question that arises is whether these three topological invari-
ants are related. We give a (partial) answer to this question in this thesis. In the
following subsections we analyze the main results contained in this manuscript.
The first two results go towards the direction of linking topological invariants for
discrete braids to those concerning continuous ones. We go even beyond this aim:
in Chapter 2 we link the Euler-Floer characteristic to a non-variational problem,
a novelty in the panorama of the Floer context. The last result, i.e. the Poincaré-
Bendixson Theorem for non-linear Cauchy-Riemann equations, is more a topo-
logical property characterizing these equations.

1.5.1 The Euler-Floer characteristic and periodic point of two-

dimensional diffeomorphisms

Endow the 2-disc D2 with the standard symplectic form ω = dp∧dq and choose a
Hamiltonian function H in the class H . Define the time-dependent Hamiltonian
vector field XH via the relation

dH = ω(XH , ·).
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Solving the initial value problem associated to the vector field XH , i.e.

�
dx

dt
= XH(t, x)

x(0) = x0

(1.5)

gives rise to a smooth family of Hamiltonian symplectomorphisms (i.e. diffeo-
morphisms that preserve the area form ω and originated from XH ) denoted by
ψH : R × D2 → D2

. The time-1 map f = ψH(1, ·) is orientation preserving and
exactly homotopic to the identity according to the nomenclature introduced in
[13]. There is a one-to-one correspondence

k-periodic points of f 1−1
←→ period-k orbits of ψH .

The latter holds because f
k
(x) = x if and only if {ψH(t, x), t ∈ [0, 1]} is a

closed orbit of period k. The relation between braids and symplectomorphisms
is explained as follows. Let x ∈ D2 be a k-periodic point, i.e. f

k
(x) = x,

k ≥ 1 , the minimal period. Then the set Ak = {x, f(x), . . . , fk−1
(x)} satisfies

f(Ak) = {f(x), f2
(x), . . . , f

k
(x) = x} = Ak, and a periodic point is thus repre-

sented by an element Ak ∈ Ck(D2
), the configuration space of k distinct points in

D2
. Any invariant set Ak of f of cardinality k is a point in Ck(D2

) and gives rise to
a k-strand braid via t �→ ψ(t, Ak). Summarizing, a k-periodic point x ∈ D2 gives
rise to an invariant set Ak := {f(x), . . . , fk−1

(x), f
k
(x) = x} for f, i.e. f(Ak) = Ak.

On the other hand, if there exists a k ∈ N and distinct points x1, . . . , xk ∈ D2
, such

that the set Ak := {x1, . . . , xk} is invariant for f, this does not imply necessarily
that there exists one k-periodic point, but that there exists a collection of periodic
points x

1
1, . . . x

1
k1
, x

2
1, . . . x

2
k2
, . . . , x

�

1, . . . , x
�

k�
with

�
�
k� = k (to visualize this, see

Figure 1.5, where there a braid with 3 strands and 2 components is represented:
the diffeomorphism does not have one 3-periodic point, but 1 1-periodic and 2
2-periodic points).

In [50] the authors show that, under the hypotheses that f has an invariant set
Am representing the m-strand braid class [y]D2 , for any proper relative braid class
[x rel y]D2 for which the braid Floer homology HF∗([x rel y]D2) �= 0, there exists an
invariant set A�

n
for f such that the union Am ∪ A

�
n

represents the relative braid
class [x rel y]D2 . The latter is a forcing result: if the braid Floer homology of asso-
ciated proper relative braid classes is non-trivial, then additional periodic points
of the time-1 map of the Hamiltonian family of symplectomorphisms induced by
the Hamilton equations are forced to exist. We stress that different braid classes
yield different periodic points.

As explained so far, for any given proper relative braid class [x rel y]D2 the
Floer homology HF∗([x rel y]D2) is well-defined and applicable to Hamiltonian
systems and area-preserving maps of the 2-disc. Two immediate questions that
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Figure 1.5: Here the braid on the left has two components and three strands. The
diffeomorphism is on the right and has one point of period one and two points
of period two. The two components of the braid are generated by two points of
period two and one of period one. The fact that the braid has three strands does
not necessarily imply that the diffeomorphism has one periodic point of period
three (source [56]).

come to mind are: Can the invariant be applied to more general systems and mappings
of the 2-disc, and to what extend can the invariants be computed?

We give a partial answer to this question in Chapter 2 and we summarize our
result in this section.

The construction of HF∗, as it is presented in this thesis, fails when X is arbi-
trary. The main reason is simple: Equation (1.5) relies strongly on a variational
principle, one-periodic solutions are critical points of an action functional. By re-
placing XH with an arbitrary X the variational structure is lost, and, so far, Floer
theory has never been applied in a non-variational setting. The project of building
a non-variational Floer theory would certainly be challenging, and there is hope
for this to work, also in light of our results presented in Chapter 4. Turning back
to our problem, not everything is lost. By substituting in (1.5) a non-Hamiltonian
vector field X we obtain �

dx

dt
= X(t, x)

x(0) = x0.

(1.6)

Under the hypotheses that X is one-periodic (X(t, x) = X(t+1, x)) and tangent to
the boundary ∂D2 (X(t, x) ·ν = 0 for all x ∈ ∂D2

, where ν is the outward unit nor-
mal on ∂D2)4, the system (1.6) gives rise to a smooth family of diffeomorphisms
φ(t, ·) : D2 → D2

, whose time 1-map g = φ(1, ·) is orientation preserving. The
4In case X = XH this means that H ∈ H
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one-to-one correspondence between period-m points of g and m-periodic orbits
of φt still holds. Note that g has less structure than f, namely it is only a diffeomor-
phism and not a Hamiltonian symplectomorphism in general. By assuming that
g has an invariant set Bm that consists of m distinct points in D2, then Bm gives
rise to a m-strand braid, exactly in the same manner as for symplectomorphims.

In Chapter 2 we show that Problems (1.5) and (1.6) can be rephrased into
problems “à la Leray-Schauder” in the following way. Multiplying by J, adding
µx, µ �= 2πZ on both sides of (1.5) and (1.6) and inverting (J

d

dt
+ µ) we obtain

respectively
Φµ,H(x) = x − (J

d

dt
+ µ)

−1
(JXH(x, t) + µx) = 0

and
Φµ(x) = x − (J

d

dt
+ µ)

−1
(JX(x, t) + µx) = 0.

In this regard both maps Φµ,H and Φµ are in the form “identity minus compact”.
Now, by assuming y to be the skeleton for X (i.e. yj

t
= X(t, y

j
), j = 1, . . . ,m)and

looking at periodic solutions in a proper relative braid class fiber Ω := [x]D2 rel y,

we prove that isolation is preserved also for the non-variational case: in other
words solutions that are contained in Ω stay away from the elements of the skele-
ton y and from the boundary ∂D2

. The Leray-Schauder degree deg
LS

(Φµ,Ω, 0) is
therefore well-defined. By assuming that y is also the skeleton for XH (such a
Hamiltonian function can always be constructed, see [50]) we perform a linear
homotopy Xα = (1 − α)X + αXH , α ∈ [0, 1]. For such homotopy Xα, y it is an
admissible skeleton, since it is a skeleton for both X and XH . Associated with the
homotopy Xα we define the homotopy of maps

Φµ,α(x) = x − (J
d

dt
+ µ)

−1
(JXα(x, t) + µx), α ∈ [0, 1].

We observe that isolation is preserved for all α ∈ [0, 1]. By the homotopy invari-
ance of the Leray-Schauder degree we have

deg
LS

(Φµ,Ω, 0) = deg
LS

(Φµ,α,Ω, 0) = deg
LS

(Φµ,H ,Ω, 0).

By linearizing Φµ around a non-degenerate solution x ∈ Ω and gauging Φ
�
µ,H

(x)

with the operator Id−(J
d

dt
+ µ)

−1
(θ Id +µ), θ �= 2πZ we prove that we can re-

late deg
LS

(Φµ,H ,Ω, 0) with the braid Floer homology: a delicate analysis of
deg

LS
(Φµ,H ,Ω, 0) via spectral flow theory reveals that

deg
LS

(Φµ,H ,Ω, 0) = −χ(HF∗([x]D2 rel y)) = −χ(HF∗([x rel y]D2)), (1.7)

where χ is the Euler characteristic of the braid Floer homology. In (1.7) the sec-
ond equality follows from invariance of fibers of the braid Floer homology. The
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parallel with the finite dimensional case is clear. In case of finite dimensions,
via the Morse inequalities one defines the Euler-Morse characteristic for gradient
vector fields and extends it via the Brouwer degree to arbitrary vector fields. In
our case we give meaning of the Euler-Floer characteristic, naturally associated
to the variational problem (1.5) to non-variational systems such as (1.6), via infinite
dimensional degree theory.

The above arguments lead to the definition of an index ι for non-degenerate
and isolated one-periodic closed integral curves x of X. By using the theory of
parity of index zero Fredholm operators we prove that for a non-degenerate and
isolated one-periodic closed integral curves of X we have that deg

LS
(Φµ,Ω, 0) is

independent of the choice of µ and of θ. More generally the index ι(x) is indepen-
dent of the inversion of the operator J

d

dt
+ µ, and of the choice of any gauging

matrix Θ ∈ M2×2(R), provided that σ(Θ) ∩ 2πiZ = ∅. We then provide a deriva-
tion of a Poincaré-Hopf formula for relative braid classes. The latter has the form
(recall (1.1)) �

x0

ι(x0) = χ(HF∗([x rel y]D2)).

The sum here is computed over all closed integral curves x0 rel y in the proper rel-
ative braid class fiber [x]D2 rel y. The index formula can be used to obtain existence
results for closed integral curves of arbitrary vector fields in proper relative braid
classes and provides an extension of the already mentioned forcing result con-
tained in [50]: if χ(HF∗([x rel y]D2)) �= 0, this forces the existence of closed integral
curves of arbitrary vector fields X in any proper relative braid class [x rel y]D2 . In
the language of diffeomorphisms and periodic points the result can be reformu-
lated as follows: under the hypotheses that a diffeomorphism g has an invariant
set Am representing the m-strand braid class [y]D2 , for any proper relative braid
class [x rel y]D2 for which the Euler characteristic of the braid Floer homology does
not vanish, there exists a fixed point for g such that the union Am∪{x} represents
the relative braid class [x rel y]D2 . Note that we obtain results concerning fixed
points of diffeomorphisms, but the same theory, with small but necessary adjust-
ments, applies to periodic points of the diffeomorphisms. A further development
would be to extend the result to any two-dimensional surfaces (with or without
boundary).

The remaining part of Chapter 2 deals with computability of the Euler-Floer
characteristic. The latter can indeed be determined via a discrete topological in-
variant. In this sense the challenge of constructing an isomorphism which links
the Floer homology for proper relative braid classes to the Conley homology of
proper discretized relative braid classes via Morse homology is not that far from
being solved. On the level of the Euler characteristic of the three homology theo-
ries, the following holds

χ (HF∗([x rel y]D2)) = χ (HM∗([q relQ])) = χ (HC∗([qD relQD])) .
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Figure 1.6: Representation of full twists of braids with 2, 3 and 4 strands (source
[30]).

The idea behind the proof of this result is to first relate χ (HF∗([x rel y]D2)) to
mechanical Lagrangian systems and then use a discretization approach based on
the method of broken geodesics. This result opens the door for computation of
the Floer Homology (at least on the level of the Euler characteristic), since the
problem of computing HC∗([qD relQD]) is combinatorial, and relates the Floer
homology to finitely computable simplicial homology.

1.5.2 Braid Floer homology equals braid Morse homology

Chapter 3 consists of an isomorphism theorem between Floer homology for PRBC
and Morse homology for Legendrian PRBC. Let x = (p, q) ∈ D2 and y = (P,Q) ∈

D2
, such that x rel y is a proper relative braid. Compose x rel y with an integer �

of full twists ∆
2
. A full twist can be explained informally in the following way:

think of pieces of string attached to the tips of your fingers and rotate one hand
by π; this is the half-twist, also also called the Garside element. Rotating the hand
once more gives the full twist (see Figure 1.6).

If the number � is chosen properly then (x rel y) · ∆2� gives rise to a braid
x

+
rel y

+ with only positive crossings. The latter are called positive (relative)
braids. This form for (x rel y) ·∆2�

= x
+
rel y

+ is called the Garside normal form,
see [10] or [25].

Passing to braid classes, we obtain the following equality

[(x rel y) ·∆
2�
]D2 = [x

+
rel y

+
]D2 (1.8)

By the shift property proved in [50] (Property (iii) of Section 1.4.1), on the level of
the homology, this yields

HF∗−2�([(x rel y) ·∆
2�
]D2) ∼= HF∗([x

+
rel y

+
]D2). (1.9)
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It follows from (1.9) that we can restrict ourselves to positive braids, hence from
now on we will consider, without loss of generality, only positive relative braid
classes. Positive braids enjoy, up to isotopy, the Legendrian property, in other
words x

+
rel y

+ is isotopic to a Legendrian relative braid x
L
rel y

L
. The latter can

be written as xL
= (qt, q) and y

L
= (Qt, Q). Denoting by π2 is the projection onto

the second coordinate we can write (relative) Legendrian as q relQ. We denote
by [q relQ], all the (relative) braids which can be homotoped via a Legendrian
isotopy to q relQ, and by [q] relQ the associated fiber.

Having introduced the concepts used in the third chapter, in the following we
summarize the content of Chapter 3, which consists of three different sections.

In the first section we define the braid Floer homology with respect to a new
class of Hamiltonian functions. The construction is carried out by taking into
account a broader class of braid classes. We consider relative classes that are
homotopic to x rel y via homotopies in R2 instead of D2

, and we denote them by
[x rel y]R2 . In this case the problem comes from the fact that fibers [x]R2 rel y are
not a-priori bounded, since they are not a priori contained in compact subsets
of D2 as it happens for [x]D2 rel y. To overcome the issue of non-compactness of
R2

, we consider a new class of Hamiltonian functions which we call hyperbolic.
Following the construction summarized in Section 1.4.1 we obtain the definition
of the hyperbolic Floer homology for unbounded proper relative braid class, which
is denoted by

HHF∗([x rel y]R2).

Even though we restrict our attention to positive braids, the hyperbolic braid
Floer homology can be defined for all kind of braids, not only for positive ones.
By following the arguments in [50] also in this case the shift theorem holds, i.e.

HHF∗−2�([(x rel y) ·∆
2�
]R2) ∼= HHF∗([x

+
rel y

+
]R2). (1.10)

The main result contained in the first section of Chapter 3 consists of proving that

HF∗([x rel y]D2) ∼= HHF∗([x rel y]R2). (1.11)

The second part of Chapter 3 deals with Morse homology for braids. This is
also a new result: so far, the formulation of a Morse theory for braids has been
proven for piecewise linear braids in [28], not yet for continuous ones. By select-
ing a positive representative x

+
rel y

+ in [x rel y]R2 , and considering Legendrian
isotopies, in the the second part of Chapter 3 we focus our attention on Legen-
drian relative braid classes [q relQ]R. For such braids we construct a Morse-type
homology. The fact that, to build our theory, we can use the classical Morse index,
instead of the Conley-Zehnder index, derives from the special properties of the
Legendrian braid classes, where only positive crossings are admitted. As in the
previous case we consider unbounded classes and a special class of Hamiltoni-
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ans, which, in this case, are called mechanical. The latter allows to construct braid
invariants with support on non-compact manifolds. At the end of the second part
of Chapter 3, we define

HHM∗([q relQ]R),

i.e., the mechanical Morse homology for unbounded proper Legendrian braid
classes. We observe, furthermore, that

HHM∗([q relQ]R) ∼= HM∗([q relQ]), (1.12)

where the latter is the Morse analogue of HF∗([x rel y]D2).

In the last part of the chapter we prove that, for a (positive) proper relative
braid class [x rel y]D2 , the following holds:

HHF∗([x rel y]R2) ∼= HHM∗([q relQ]R). (1.13)

The isomorphism (1.13) is proved using the machinery of [47], with some modi-
fications that make it applicable to the theory of relative braid classes. In essence,
to prove (1.13) we use a perturbation method, through which the solutions of the
heat equation can be seen as limit as ε goes to zero of an ε dependent Cauchy-
Riemann equation, see Section 3.4.1. As in [47] we prove that the bounded so-
lutions of the Cauchy-Riemann equations are in one-to-one correspondence with
the bounded solutions of the heat flow. The map which ensures the one-to-one
correspondence takes the name of the Salamon-Weber map. We prove that this
map respects the braid classes. As a consequence, the Morse complex defined
for Legendrian braid classes agrees, up to isomorphisms, with the Floer complex
defined for relative braid classes.

Putting together (1.11) (1.12) and (1.13) we obtain that for a proper positive
braid class in D2

[x rel y]D2 it holds that

HF∗([x rel y]D2) ∼= HM∗([q relQ]).

By considering not-only positive proper relative braid classes, and considering
the shift (1.9), this is a first step towards the conjecture that

HF∗−2�([x rel y]D2) ∼= HM∗([q relQ]) ∼= HC∗([qD relQD]). (1.14)

Equation (1.14) would link the Floer braid invariants to the discrete invariant for
piecewise linear positive braid classes, and hence to finitely computable simpli-
cial homology, opening finally the door for computation of the Floer homology.
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1.5.3 Asymptotic behavior of the Cauchy-Riemann equations

Chapter 4 goes towards the direction of constructing a Floer homology theory
in a non-variational setting. Our result is purely topological and exploits the
structure of the Cauchy-Riemann equations. By looking at the construction of
the Floer/Morse/Conley homology we see that the Cauchy-Riemann equations
are obtained as formal L2-gradient flow of the Hamiltonian action. In this case,
bounded solutions will be, generically, connecting orbits between equilibria. As
already mentioned, equilibria (i.e. the critical points of the action functional) are
in this case periodic solutions of the equation

xt = XH(t, x), x ∈ D2
, t ∈ S

1
, (1.15)

for a chosen non-autonomous Hamiltonian vector field XH on D2
. For a general

vector fields X we have shown furthermore that we can build a Poincaré-Hopf
formula and give meaning to the Euler-Floer characteristic. By substituting a
non-Hamiltonian vector field X in (1.15) we lose the variational structure, and,
with it, the gradient-like behavior of the Cauchy-Riemann equations. In this case
they become

us − J(ut −X(t, u)) = 0, u : R × S
1
→ D2

, t ∈ S
1
. (1.16)

If X = XH , then generically bounded solutions of the non-linear CRE are con-
necting orbits between one-periodic solutions of (1.15). If X is arbitrary, as in
(1.16), then a priori bounded solutions do not have the connecting orbit structure,
since (1.16) is not a gradient flow. Nevertheless, we have a result concerning the
asymptotic of bounded solutions of (1.16). We prove that the asymptotics of (1.16)
behaves surprisingly well as time s goes to infinity. More precisely, we prove that
bounded solutions of Equation (1.16) admit Poincaré-Bendixson behavior.

The classical Poincaré-Bendixson Theorem describes the asymptotic behavior
of flows in the plane. The topology of the plane puts severe restrictions on the
behaviour of limit sets. Poincaré-Bendixson Theorem states for example that if
the α- and the ω-limit set of a bounded trajectory of a smooth flow in R2 does
not contain equilibria, then the limit set is a periodic orbit. In full generality the
classical Poincaré-Bendixson Theorem can be formulated as follows.

1.5.1. Theorem (Poincaré-Bendixson (1906)). Let R be a region of the plane which is
closed and bounded. Consider a dynamical system ẋ = X(x) in R where the vector field
X is at least C1. Assume that R contains no fixed points of X . Assume furthermore that
there exists a trajectory γ of X (a solution of ẋ = X(x)) starting in R which stays in R

for all future times. Then,

(i) either γ is a closed orbit

(ii) or γ asymptotically approaches a closed orbit.
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The classical proof of the Poincaré-Bendixson Theorem exploits the fact that, since
the vector field X is autonomous, flow-lines can not intersect. As a consequence,
the Jordan curve theorem is applicable and hence restricts the asymptotic behav-
ior of flow-lines in two-dimensional domains. We stress that the above result is
strictly linked to the dimensionality of the plane and essentially rules out chaos
in the plane. However, it does not seem to hold for other configuration spaces or
other types of dynamical systems.

Dynamical systems on two-dimensional manifolds other than the plane may
well violate the Poincaré-Bendixson Theorem. Consider for instance the follow-
ing vector field on the torus, which we identify with the unit square in the plane
with opposite sides identified:

ẋ = 1 and ẏ = π. (1.17)

There is nothing special about the choice of π: any other irrational number would
work just as well. Even though the torus is compact and the vector field (1.17)
does not have any zeros, the orbits of (1.17) are not periodic: one can check that
these orbits densely fill up the torus. This is referred to as quasi-periodic mo-
tion. Nevertheless, there is a generalization of the Poincaré-Bendixson for two-
dimensional manifolds: either the classical dichotomy holds or the manifold is a
torus.

In dimension three or higher, orbits may approach a very complicated limit set
known as a strange attractor, which is characterized by a non-integer dimension
and the fact that the dynamics on it are sensitive to initial conditions. In other
words, chaos occurs. A celebrated example of a strange attractor is the Lorentz
attractor.

However, the remarkable result by Fiedler and Mallet-Paret [18] establishes an
extension of the Poincaré-Bendixson Theorem to infinite dimensional dynamical
systems with a discrete positive Lyapunov function. They apply their result to
scalar parabolic equations of the form

us = utt + f(x, u, ut), x ∈ S
1
, f ∈ C

2
. (1.18)

For this equation the result of Matano ([36]) holds: it states that intersection be-
tween two solutions of (1.18) can only be destroyed (and not created) as times s

increases. Here, the existence of a linear projection onto R2
, of a discrete positive

Lyapunov function combined with regularity of Equation (1.18) force solutions of
(1.18) to have a Poincaré-Bendixson like behavior. As a matter of fact, the result
contained in [18] does not only hold for the Equation (1.18), but for regular (semi)
flows on Banach spaces endowed with a positive discrete Lyapunov function and
a linear projection onto R2

. The result is independent of the dimensionality of the
system.
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With our result, we establish a version of the Poincaré-Bendixson Theorem
for bounded orbits of the non-linear Cauchy-Riemann equations in the plane. We
prove that the asymptotic behavior, as s goes to infinity, of bounded solutions
of Equation (1.16) is as simple as the limiting behavior of flows in R2

. The non-
linear Cauchy Riemann system is elliptic, and the Cauchy problem for elliptic
equations is unstable with regard to small variations of data, i.e., it is ill-posed. As
a consequence, there is no flow associated to (1.16). For this reason we consider
the space of bounded flow-lines of (1.16). This space has nice properties, among
which compactness and Hausdorffness. Since Equation (1.16) is autonomous in
s, we have that the space of bounded solution is invariant under s-translation.
By translating flow-lines we can build a flow on such a space. The constructed
flow is not regularizing, but at least it maintain the requirement of continuity.
Furthermore, flow lines of equation (1.16) are endowed with a discrete Lyapunov
function: as explained in the previous sections as times s increases, the winding
number between two solutions decreases, possibly reaching negative values.

By embedding equation (1.16) in a more abstract setting, which include also
equation (1.18), our result gives an abstract extension of the Poincaré-Bendixson
Theorem to flows that allow a discrete Lyapunov function. We point out that
the main differences between the results in [18] for parabolic equations and the
results in Chapter 4, are that the Cauchy-Riemann equations do not define a well-
posed initial value problem and, more importantly, the discrete Lyapunov func-
tions that we consider are not bounded from below. Furthermore, our result does
not assume differentiability of the flow, nor does the flow need to be defined on a
compact Banach space. We only assume the space to be compact and Hausdorff.
We also believe that most of the result contained in Chapter 4 can be extended to
semi-flows.

Our result could be used to build a non-variational Floer theory. By proving
that the asymptotic behavior of the non-linear Cauchy-Riemann equations is ei-
ther a point or a periodic orbit we could build a Floer theory “à la Smale”[49] by
incorporating in the chain complex periodic orbits and fixed points.

1.6 Conclusions and future work

The list of challenges we would like to solve is far from being complete. First
of all, the question of transversality for a complete Morse theory for Legendrian
PRBC has not been proved in the present work. We expect this to hold via mod-
ifying the proof for the Hamiltonian case and exploiting the Sard-Smale theory
together with a version of the Implicit Function Theorem in infinite dimension.
Second, we would like to fully prove the isomorphism (1.14). The first half is
contained in this thesis, but the second half has a special meaning: it would
open the door for computation of the Floer homology, via the construction of
a finite cube complex. Developing computer algorithms would be a further step.
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Furthermore, extending the Floer theory to non-variational problems would be
even more challenging. In fact, Floer theory has not been applied beyond the
variational context, since it crucially uses the gradient structure of the Cauchy-
Riemann equations. The above described Monotonicity Principle of the Cauchy-
Riemann equations with respect to the crossing number Cross([x]D2 rel y) remains
valid for the non-variational Cauchy-Riemann equation (1.16). As in the varia-
tional case, bounded solution of the Cauchy-Riemann equation in a proper rela-
tive braid class are isolated. Notwithstanding, in order to link the Floer invari-
ants HF∗([x] rel y) to the non-variational Cauchy-Riemann equations we need to
build a complex in a different way. In this sense the Poincaré-Bendixson Theo-
rem for the non-linear Cauchy-Riemann equations suggests that limits as s → ∞

are either periodic solutions of xt = XH(t, x) or periodic solutions in s (and t).
This first step establishes that the non-variational Cauchy-Riemann equations are
generically a Morse-Smale system.

The next step would be, after putting the system in general position, to build
an appropriate chain complex (C∗, ∂∗) incorporating periodic orbits and fixed
points. If such an extension of the Floer homology can be developed then

H∗(C∗, ∂∗) ∼= HF∗([x rel y]D2).


